On decomposability of compact perturbations of operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Decomposability of Compact Perturbations of Operators

Let A be a Hilbert-space operator satisfying the growth condition ||(z —/4) || < expi&[dist(z, /)]~SS, z //.where / is a C Jordan curve, and K > 0, s £ (0, 1) are two constants. Let T = A + B for some fi e C , I < p < oc. It is shown that T is strongly decomposable if and only if cr(T') does not fill the "interior" of /. 1, H. Radjavi and the author [13] showed that if a Hilbert-space operator ...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

ON COMPACT PERTURBATIONS AND COMPACT RESOLVENTS OF NONLINEAR m-ACCRETIVE OPERATORS IN BANACH SPACES

Several mapping results are given involving compact perturbations and compact resolvents of accretive and m-accretive operators. A simple and straightforward proof is given to an important special case of a result of Morales who has recently improved and/or extended various results by the author and Hirano. Improved versions of results of Browder and Morales are shown to be possible by studying...

متن کامل

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0407650-2